
Claudio P – Report on the restaurant manager program 

Structure 

 

The structure of the functions is quite simple: there is a main function that starts a while loop and requires 

an input (string) from the user. As long as the string is different from ‘X’, the while loop will continue. In all 

other cases, a series of if structures will check the string and determine which function to call. For every 

feature from the requirements there is a different function since each one of them is based on a different 

query sent to the database. 

 

Database Schema  

My database only has two tables:  

dining_table only contains two columns, representing the 

identification of the table (tableID, which is the table number and 

is the only primary key of the table) and the capacity, which is the 

number of seats of the referred table.  

Reservation contains four columns: name, phone (which are both 

primary keys and represents the name and the phone number of 

the person who is reserving the table), guests (number of booked seats) and tableID, which is the foreign 

key linking to the dining_table relation.  

main()

list_all

'L'
list_unres

'U'

undo_res

'C'

res_num

'NT'

left_capacity

'NU'

overall_guests

'NG'
max_unres

'GU'

max_b_unres

'GR'

res_num_g

'NT g'

res_num

'NT'

reservation

'R'

show

'S'



Claudio P – Report on the restaurant manager program 

Notes: dining_table is pretty much untouched by functions, since it is only used to run select queries or 

create views. 

Specifications 

Software Version 

DBeaver 21.0.1.202103211229 

MySQL 8.0 

Windows 10 Pro 20H2 

 

Log information about the database should be included in the .py file: 

    host="localhost", 

    user="root", 

    password="admin", 

    database="Project" 

 

Notes  

I decided to use n = 10, since I wanted to have two tables per each capacity from 2 to 6. In order words, 

two table with 2 seats, two with 3 seats and so on. Note that the tables are ordered by their maximum 

number of seats, in ascending order. I did this on porpoise, because this way during the table selection 

phase the reservation(s) function will always select the table with minimum capacity available (yet higher 

than the number of guests I requested). Example: if someone tries to reserve a table for 2, the software will 

select the free table with minimum capacity higher or equal to 2, and not just any free table with enough 

free seats.  


